
16TH INTERNATIONAL CONFERENCE ON GEOMETRY AND GRAPHICS ©2014 ISGG
4–8 AUGUST, 2014, INNSBRUCK, AUSTRIA

Paper #000

NAVIGATING MULTI-DIMENSIONAL LANDSCAPES IN FOGGY
WEATHER AS AN ANALOGY FOR GENERIC PROBLEM SOLVING

David RUTTEN
Robert McNeel & Associates, Austria

ABSTRACT: Developing algorithms that solve specific problems is a major area of research in
computer science. Minimizing runtime complexities, reducing memory overhead, quickly returning
intermediate or partial results, and balancing speed vs. accuracy are all important issues that need to
be well understood when one wants to master algorithm design. It is safe to say that the people who
need algorithms vastly outnumber those who can write them. However if we are willing to sacrifice
performance, the application of generic solvers may democratize the field.
In principle, generic solvers are capable of solving most problems. This isn’t quite as magical as it
sounds, mostly because it involves a large amount of preparatory work by intelligent human beings.
This includes defining the problem phase space and the relevant fitness function, which together make
up the fitness landscape. Generic solvers are designed to find their way around these landscapes and to
converge on high ground as quickly as possible.
This paper serves as an introduction to the theoretical side of generic problem solving with a strong
focus on the geometry and topology of fitness landscapes. Along the way, several implementations of
popular solver algorithms will be discussed.

Keywords: Generic Solvers, Phase Space, Fitness Function, Fitness Landscape, Peak Finding, Hill
Climbing, Simulated Annealing, Evolutionary Algorithms

1. PROBLEM SOLVING

The problem of how to systematically solve prob-
lems goes back a long way. The history of algo-
rithmics can be traced back to the mathematicians
Brahmagupta and Abū ‘Abdallāh Muh. ammad ibn
Mūsā al-Khwārizmı̄ from the 7th century India
and 9th century Persia respectively. Algorithms
are sets of unambiguously repeatable instructions
which, when confronted with the same question,
reliably give the same answer. The earliest known
algorithms were devised to solve specific arith-
metic problems such as multiplication or finding
greatest common divisors.

Only in the last few centuries have mathe-
maticians begun to approach algorithms from
an analytic point of view, creating an arithmetic
of algorithms which allows for their systematic
classification and evaluation.

1.1 Problem categories
Computational mathematicians have come up
with a set of classes to categorize different types
of problems. Some of the better known classes
are P, NP, NP-Complete, and NP-Hard. The class
to which a problem belongs indicates roughly
how quickly it can be solved. For example, it is
always possible to generate answers to P class
problems within a reasonable amount of time1.
Problems that belong to NP-Complete on the
other hand are more difficult as there exists no
reliable way to generate a solution. However, if
a solution is proposed, it is at least possible to
recognize it as such. NP-Hard problems don’t
even have that luxury, not only is there no known

1Incidentally, ‘a reasonable amount of time’ in compu-
tational complexity means ‘before the universe ends’, so
this is not necessarily a practical categorization.

way to generate an answer, it isn’t even clear how
to test a tentative answer for correctness.

For the purposes of this paper we shall com-
prehensively ignore the accumulated knowledge
of the past thousand years of algorithmics and
approach all problems in an NP-Hard-ish fashion.
That is:

• it is not known how to generate the correct
solution,

• it is not known how to test a proposed solu-
tion for correctness,

• but it is possible to compare two proposed
solutions and select the more correct one.

1.2 Solver categories
Solutions to problems —or rather, methods for
finding solutions to problems— can of course
also be categorized. Algorithms can be described
as greedy or lazy, stochastic or deterministic, iter-
ative or recursive, exact or approximate and a
million adjectives more. These characteristics
are by no means mutually exclusive or indica-
tive of quality. Different situations call for dif-
ferent types of algorithms. Take for example
the age-old problem of sorting a collection of
values. There exist at least a dozen famous sort-
ing algorithms2, each with its own strengths and
weaknesses. Which algorithm is best depends
on whether one is sorting large or small collec-
tions of data, whether the data is already some-
what sorted, whether the algorithm is allowed
to use a lot of memory, whether the algorithm
should yield intermediate results if aborted, how
unsortable data is handled and so on and so forth.

Since a number of different solver algorithms
will be discussed below, a passing familiarity
with some relevant algorithm categories is impor-
tant. A casual definition of each will suffice in
this context.

2Visit sorting-algorithms.com for a visual comparison
of the seven most common ones.

Greedy algorithms are very local-minded. They
make decisions based on the immediate envi-
ronment rather than taking long-distance or
long-term goals into account.

Deterministic algorithms follow a fixed and pre-
dictable process which tolerates no chance
or randomness.

Stochastic algorithms have a random compo-
nent to them and are therefore less pre-
dictable than deterministic algorithms3.

Exact algorithms are guaranteed to find the best
possible solution(s) given the initial con-
straints.

Approximate algorithms will typically find
some sort of solution without any guaran-
tee that it is the best possible one.

Progressive algorithms compute solutions in an
iterative manner, where each cycle yields
—on average— a better answer than the pre-
vious one.

Adaptive algorithms can operate on a changing
set of constraints and inputs. These algo-
rithms run continuously within a dynamic
environment.

Specific algorithms are designed to solve only
one kind of problem. As a result they tend to
be fast and reliable, but they are difficult to
write. The vast majority of algorithms used
on computers today fall into this category.

Generic algorithms are designed to tackle a
wide variety of problems. This flexibility
is accompanied by a significant drop in per-
formance.

Open algorithms allow external entities (be they
human beings or other algorithms) to par-
ticipate in the solving process. Seemingly
unpromising lines of inquiry can be investi-
gated upon the request of an external actor.

3On digital computers, all processes are inherently
deterministic, but pseudo-randomness is sufficient to clas-
sify an algorithm as stochastic.

2

http://www.sorting-algorithms.com/

2. PROBLEM ANALYSIS
So how exactly is a generic solver able to deal
with many different problems? Doesn’t that
require a large amount of intelligence and under-
standing? The short answer is yes, but the key
insight is that the intelligence need not reside in
the solver itself. If the solver is open, another
algorithm (which may well be classified as spe-
cific) can fill in the knowledge gaps. In other
words, a generic solver doesn’t need to know the
first thing about nurbs geometry in order to find
the intersection point between two curves, all it
needs is a companion algorithm that does. By
separating the ‘knowing’ and the ‘solving’ into
two disjoint algorithms, they both become easier
to write and easier to repurpose.

Communication between the generic and the
companion algorithm can be thought of as a mix-
ture of twenty questions and hunt the thimble.
The generic algorithm confronts the companion
algorithm with a tentative solution, to which the
latter assigns a quality rating (cold, warmer, hot!).
The generic algorithm is tasked with interpret-
ing the clues and the companion is tasked with
computing the ‘temperature’ or fitness of each
proposed solution. For this exchange to work,
both algorithms need to speak a common lan-
guage. Happily this language is very succinct
and it can be described by a single mathematical
equation:

f (τ) = q (1)
f : τ → R (2)

Equation (1) defines the common language as a
mathematical function, while equation (2) shows
the mapping of this function, which is the mathe-
matical way of specifying what sort of data goes
in and what sort of data comes out. Terse though
this notation may be, it hides a number of fairly
abstract ingredients and deserves a detailed dis-
cussion.

In the above notation f represents the fitness
function, which operates on τ (more on that later).
The output of f is labelled q (for quality) and it

represents the fitness as a single numeric value4.
The mapping notation (2) merely states that f has
to consume data in the form of τ while it should
return data in the form of a real number.

This leaves us with τ , which is a type of tensor.
A tensor is simply a collection of variables called
elements, which together describe all possible
answers to the problem at hand, both the good
and the bad ones. In fact the precise layout of τ

depends on the nature of the problem, and defin-
ing this layout is the responsibility of the com-
panion algorithm. Since digital computers are
only capable of dealing with numeric data, all
elements that make up τ must be numbers.

Along with a tensor definition, the companion
algorithm must also specify which transforma-
tions can be applied to τ . Usually this involves
nothing more complicated than a list of directions
in which τ is allowed to be pushed and —for each
direction— how far one can push it.

Perhaps an example is the best way to explain
what a tensor in this context is. Imagine one is
asked to paint a 10 cm dot on the Mona Lisa so
that it least disrupts the original painting. This
is basically an optimization problem of two vari-
ables; position and colour. We need to find which
combination of position and colour has the high-
est fitness. However position and colour are not
numbers and thus cannot directly be elements of
τ . Luckily it is possible to describe positions and
colours using numbers, which provides a way
forward for defining a tensor for this particular
problem:

τ = {X ,Y,R,G,B} (3)

The position variable is represented by two
numbers that encode the horizontal and vertical
offset of the paint dot, while the colour variable

4It has to be a single number as it is vital that two fit-
nesses can be unambiguously compared using relational
operators. If the fitness were more than a single number,
then the problem can be described as multi-variate, and in
such cases solver algorithms are employed to map out fam-
ilies of solutions that balance multiple conflicting fitness
metrics. This paper will not discuss such cases.

3

requires three numbers, one for each of the RGB
channels. A tensor element is defined by two
properties; namely the index at which it occurs in
the tensor, and also a set of possible values it can
assume5. The R, G and B elements for example
can be assigned any integer value in the range
0–255. If we assume the dots can only be posi-
tioned on the painting at one centimetre intervals,
then X and Y are constrained to the integers in
the ranges 5–48 and 5–72 respectively6. These
limits make it possible to calculate the total num-
ber of different states τ can assume. The number
of states, also called the variability of a tensor,
can be written using angle bracket notation:

〈τ〉 = 〈44,68,256,256,256〉 (4)
〈τ〉 = 44×68×2563 ≈ 5×1010 (5)

There is now enough information to do some
actual maths. The tensor for this problem con-
tains five elements which are entirely indepen-
dent of each other, meaning that the amount of
red in the colour is not limited or affected by the
amount of blue or the x-position of the dot. Five
independent elements define a five-dimensional
tensor. The variability of τ equals the product of
the variabilities of all the elements of τ , as per
equation (5). Even if a single call to f (τ) took
only ten milliseconds, it would still take nearly
sixteen years to iterate over all unique states of τ .
This is clearly not a practical approach.

The set of all states of τ is called a phase space
and is denoted with the symbol P (a superscript
integer is sometimes included to denote dimen-
sionality). Every possible location in P is identi-
fied by a specific tensor. In this sense, tensors act
as coordinates. Usually the phase space can be
thought of as an N-dimensional hypercube, which

5In the case of interdependent elements, additional rela-
tional properties come into play.

6The dimensions of the Mona Lisa are 53 cm × 77 cm,
however dots cannot be placed closer to the edge than 5cm,
otherwise they would only partially cover the painting,
which would be cheating.

is at least a reasonably fathomable concept7.
A note on phase space sizes. The solver algo-

rithm mentioned above (i.e. ‘try every possible
answer and remember the best one’) is called
a brute force search. For small problems brute
force may be a reasonable solution, but as the
problem grows larger the time it takes to enumer-
ate and test all possible states increases rapidly.
Table 1 shows brute force runtimes for several dif-
ferent tensor definitions, while assuming a 10ms
duration for a single measurement. The rows con-
tain tensors with one, two, three, or four elements,
while the columns contain different variabilities
of the tensor elements.

|τ| 101 102 103 104

1 0.1s 1s 10s 2m
2 1s 2m 3h 12d
3 10s 3h 116d 317y
4 2m 12d 317y 3My

Table 1: Brute force runtimes

A tensor with three elements (6) where every
element can take on one thousand unique values
(7) results in a phase space size of one billion
unique coordinates (8). Even when a single itera-
tion takes only ten milliseconds, to evaluate each
and every one would still take 116 days.

τ = {A,B,C} (6)

〈τ〉= 〈103,103,103〉 (7)

〈τ〉= 109 (8)

7In the more complicated case of interdependent tensor
elements, it could be that the variability of one element
(i.e. whether it can assume 1, 14 or 3517 different states)
depends on the value of another element. In these cases
the dimensionality of P may differ from point to point.
For the remainder of this paper we will ignore variable
dimensionality.

4

2.1 N1
2 dimensional landscapes

It is not feasible to properly convey what a com-
plete phase space of more than two dimensions
looks like on paper, which is why I will adopt the
space-time diagram convention of cosmology and
draw the phase space as a flat, two-dimensional
plane. In such a representation the individual ten-
sors that populate the space are all sitting side by
side on the plane.

1

2

3

P ′

Figure 1: P as the set of all tensors

In the above figure 1 represents the entire
phase space P as collapsed to a plane8. The
objects marked 2 represent the individual ten-
sors (visualised as cylinder permutations rather
than collections of numeric values). The verti-
cal bars marked 3 represent the fitness values
of all tensors. These values are computed by the
companion algorithm via f (τ).

The notion of a fitness landscape L as the com-
plete set of all fitness values now starts to emerge.
That is, if we apply f (τ) to every τ in P and
thus draw all possible arrows, we get a scalar
field of fitness values that pervades all of P . The
easiest way to imagine this geometrically is to
treat the fitness value at each point in P as an
elevation, thus ‘pulling’ P from a flat plane into
a landscape.

8As a reminder that this is a projection of P onto two
dimensions, this paper will include a P ′ symbol in any
figure which contains such a collapsed space.

1

2

← 3

P ′

L′

Figure 2: Fitness landscape as an extrusion of P ′

Figure 2 shows the fitness landscape resulting
from a fitness function being applied to a phase
space9. In the landscape one can immediately
see certain characteristics of P and f (τ) such as
low quality solutions 1 , high quality solutions
2 , and local optima 3 .

Since the mapping of the fitness function is
defined as τ → R (see equation (2), page 3), we
only get a single fitness or ‘elevation’ for every
point in P . Which means that planes, mountains,
and valleys are all possible features of fitness
landscapes, but caves, bridges and overhanging
cliffs are not, as that would require more than
one elevation value per coordinate. In this sense
the landscape falls ever so slightly short of being
truly three-dimensional. This sort of geometry
is typically referred to as two-and-a-half dimen-
sional in the machining and graphics industries10.
Since all phase spaces are of integer dimension-
ality, it follows that all fitness landscapes are of
integer dimensionality + 1

2 .

9 Again, to avoid misunderstandings, fitness landscapes
that are drawn as 2 1

2 dimensional objects are marked with
an L′ symbol.

10Not to be confused with the partial or ‘Hausdorff’
dimensions that occur in fractal geometry.

5

Although it is not possible to draw landscapes
whose dimensionality exceeds 21

2 , it is perhaps
possible to describe them verbally and get a sense
of how the complexity increases with every addi-
tional dimension. A one-dimensional phase space
can be represented by a line, like the x axis on
a typical graph. The associated landscape must
therefore also be a single curve that moves up
and down as one travels from left to right along
P1, see figure 3. The best solution can be found
wherever the curve has its highest peak, which is
a trivial exercise for the human eye (unless there
are multiple peaks with very similar elevations).
One could spot such a peak after looking at a
curve for no more than half a second.

P1→

L1 1
2

τ1 τ2 τ3 τ4 τN

lo
w

q
→

hi
gh

Figure 3: f (τ) for P1.

In the two-dimensional case, P2 and L2 1
2 actu-

ally look like the diagrams in this paper, but the
geometry becomes significantly more complex
with P3 and L3 1

2 , as it is not possible to imagine
an extrusion at right angles to a volume. How-
ever instead of a landscape, one can think of an
elevator car with cigarette smoke. The interior
of the car is an analogy for P3 and the density
of the smoke represents the fitness at each point
in P3. The smoke will be thicker in some places
and more spread out in others. Instead of a peak
in a landscape, the search is now for the cubic
millimetre with the thickest smoke. This will cer-
tainly require a lot of squinting and head bobbing,
if one can see it at all.

Extending this analogy to one more dimension
(P4 and L4 1

2) requires that one take into account
not just the smoke at any one instant in time, but
the motion of smoke particles during an entire
time interval. In this case the goal is to find the

cubic millimetre with the highest density at any
given second between the doors closing in the
lobby and the doors opening on the fifth floor.
Every additional dimension increases the size of
P in an exponential fashion, which is why the
runtimes in table 1 increase so dramatically with
every row.

3. THE FAMOUS FOUR
Up to this point the purpose of this paper has
been to introduce the theory of tensors, phase
spaces, fitness functions, and fitness landscapes.
While it is possible to draw entire landscapes as
a theoretical exercise, one should bear in mind
that at the start of a new search, the actual shape
of a fitness landscape is entirely unknown. The
diagrams in this paper serve only as visual aides
and one should not infer from them that these
landscapes are at any time entirely computed.
There is one thing —and one thing only— that
can be done to gain information regarding the
shape of the landscape, and that is to pick some
tensors and see what fitness values f (τ) assigns
to them.

One can think of it as standing in the landscape
and having a GPS receiver but no map, while
being surrounded by such thick fog that even
the terrain underneath is barely visible. Given
these limited tools, how does one find high-
ground? This is the issue that generic solvers
must deal with, and different solvers take differ-
ent approaches. Like a GPS reading, a single sam-
ple may take a significant amount of time. Testing
a bunch of pixels underneath a circle may take no
more than 10ms, but performing a sunlight analy-
sis on a specific window shape for every daylight
hour for every day of the year could easily take
seconds if not minutes. The solver must find high-
ground in the landscape before the passage of the
time renders the problem irrelevant.

The remainder of this paper will discuss four
common generic algorithms in order of complex-
ity while highlighting their strengths and weak-
nesses against the backdrop of different land-
scape geometries and topologies.

6

3.1 Divide and conquer
Divide-and-conquer (DC) is the name for an
entire paradigm of algorithms, both specific and
generic ones. The core idea behind DC is to
break a problem into smaller and smaller pieces
until the fragments are small enough to be solved
directly (for example using a brute force algo-
rithm). An implementation of DC within the
context of peak finding might work as follows:

1. Define a domain Di for the search. When
the algorithm begins, Di will be identical to
the boundaries of P .

2. Sample the tensors at the vertices v of a grid
Gi within Di.

3. Find the highest quad(s) within the grid.

4. Shrink Di to contain only these quads. This
may involve splitting Di into one or more
disjoint Di+1 regions.

5. Repeat (1) through (4) until:

(a) a solution with an acceptable (prede-
fined) fitness is found,

(b) or Di becomes so small as to make
further subdivisions pointless.

1

G ′

L′

v→

v→
v→

v→

Figure 4: Sampling grid on L

Such an algorithm is easy to implement, but
it does rely on a number of assumptions regard-
ing L that will not be true for all cases. First of

all the algorithm treats the sampling grid G as
a proxy for L at every iteration. If L contains
relevant details that are smaller than the spacing
between adjacent samples, they may well go over-
looked. Narrow peaks with a small footprint are
particularly likely to go unnoticed, as 1 in figure
4 shows. To rephrase that in a way that points
the accusing finger at the algorithm instead of
the landscape; DC assumes that L is uninterest-
ing over short distances and can thus be reliably
approximated with a low density grid.

The extent of a peak, usually called its basin
of attraction, can be described as the area from
which one can reach the peak while only walk-
ing straight uphill. The height of a peak and
the extent of its basin are completely unrelated
properties, and quite often peaks representing low
quality solutions have larger basins than peaks
representing high quality solutions.

1

2

2

L′

Figure 5: Basins of attraction

The above figure shows a landscape with three
peaks, where 1 represents a high quality solution,
while the remaining ones marked 2 represent low
quality solutions. The arrows show the steepest
way up from a sampling of points across L′. As
is now visible, the vast majority of arrows lead to
low quality peaks.

Another problem with DC is that it does not
scale well to higher dimensions. A sampling grid
accuracy needs to be picked for every iteration,
and this accuracy needs to be tight enough to not
miss significant landscape features. The number
of actual fitness samples that needs to be taken

7

for a single DC iteration11 is defined as the prod-
uct of the number of samples for every tensor
element. For a sampling density of ten steps per
tensor element in P4, a single iteration requires
104 = 10,000 samples. At half a minute per sam-
ple for something as computationally intense as
for example a daylight analysis, the first DC itera-
tion will have a runtime of about three and a half
days.

Yet for low-dimensional problems DC is often
a good approach and it is certainly one of the
more popular search algorithms out there. A
straight-forward implementation of DC can be
categorized as greedy, deterministic, approxi-
mate, and progressive (see page 2 for an expla-
nation of these categories). Since the algorithm
quickly discards large areas in the landscape as it
shrinks the search domain, it is not adaptive.

3.2 Hill climbing
While divide-and-conquer at least attempts to find
the best solution, a hill climbing algorithm is
designed to only take local conditions into con-
sideration. Starting from an arbitrary location on
the landscape it will try and walk uphill as fast it
can. It achieves this by sampling the tensors adja-
cent to the current position to see which one is
the fittest and then moving in that direction until
it finds a peak, or until something bad happens.
A simple implementation of a hill climber might
work as follows:

1. From a location τi, sample adjacent tensors
in all meaningful directions. Remember τ j
as the neighbour with the highest fitness.

2. Define a travelling vector ~v = τ j− τi, and
multiply by a scalar S representing the step
size.

3. Take a step in P , defined as τi+1 = τi +~v.

4. Evaluate the fitness qi+1 at τi+1.

11At least assuming that a search domain does not split
into multiple subdomains, in which case more samples are
required still.

5. Repeat (3) and (4) until:

(a) qi+1 is less than qi,

(b) or until a boundary of P is reached.

6. Repeat (1) through (5) until:

(a) a solution with an acceptable (prede-
fined) fitness is found,

(b) or there are no adjacent tensors with
higher fitness than the current one.

To put that in plain English; pick a direction
that seems to go uphill the steepest, then keep
walking in that direction until you start walking
downhill, or until you can walk no further. Then
pick a new best direction and start walking again.

Hill climbers are greedy algorithms that tend to
find the peak whose basin of attraction they start
in. This behaviour isn’t necessarily a drawback,
but it does mean that using hill climbers to find
the best possible solution(s) is only possible if L
doesn’t have too many local optima. Bumpy land-
scapes such as shown in figure 2 are unsuitable
for a hill climbing approach. In extreme cases
L can start to exhibit fractal properties (bumps
upon bumps upon bumps). Since most algorithms
depend on at least a small level of continuity in L,
such landscapes often defy navigation algorithms,
but hill climbers in particular are vulnerable to
such geometry.

L′

Figure 6: Landscape with fractal properties

Hill climbers are significantly more difficult to
implement than divide-and-conquer algorithms,
mostly because there is a lot of fine-tuning

8

involved. Although in theory adjacent tensors
can be evaluated to get the local slope or gradient
of L, it is sometimes better to pick tensors that
are not directly adjacent but a bit further away.
Short distance sampling is liable to suffer from
tiny amounts of numeric noise that are inherent
in f (τ), but how far away should a sample be
taken? It depends on the nature of L, which
the algorithm is not supposed to know anything
about.

Another fine-tuning problem arises with the
selection of a step size S. The best sampling
radius for the gradient approximation is unlikely
to be the same number as the ideal distance for
subsequent steps. But what is the ideal value for
S? Again, it depends on the geometry of L.

It is also reasonable to expect S to decrease
over the course of the search. While running
towards a far away peak, it makes sense to take
long strides in order to get there quicker. But near
a peak big leaps will probably just overstep the
summit and make things worse. But how sharply
should S decline over time? Nobody knows.

In addition to the problems mentioned above,
which are at least in principle solvable, hill
climbers suffer from poor scalability to higher
dimensional spaces. It is computationally cheap
to walk across a landscape, but as the dimension-
ality of P increases it becomes more and more
expensive to determine the local gradient12. One
would need at least two samples in opposite direc-
tions for every principle axis in P 13.

When discontinuities in L are rare (even if they
are large), they should not interfere too much
with a hill climbing approach, as there are still
plenty of connected areas where a sequence of
progressive steps can be taken.

12Measuring the local gradient is only expensive if it has
to be inferred by sampling the immediate surroundings. If
a derivative fitness function f ′(τ) is known then the search
would scale very well to higher dimensions. However, a
lot of fitness landscapes are not readily differentiable.

13This is true for tensors on the interior of P only. Loca-
tions along the boundaries and edges of P require fewer
samples.

L′

Figure 7: Landscape with few discontinuities

Hill climbing algorithms can be categorized
as greedy, deterministic, exact (though only in a
local optimum sort of way), and progressive. It is
possible to introduce a certain amount of random-
ness and turn the categorization away from the
deterministic and towards the stochastic. Instead
of sampling tensors parallel to phase space axes,
a randomized sampling could be employed. One
benefit of such a change is that it may reduce the
number of turns required, especially in the case
of ridges that exist at angles to tensor axes in P .

3.3 Simulated Annealing
The previous two algorithms may not be simple
in their details, but they mimic the way humans
would solve problems and it is therefore easy to
see how they might work. Simulated annealing
is not like that and it appears to follow some very
unusual and suspect rules. ‘Annealing’ is a term
that comes from a treatment process in metallurgy
which is closely related to crystallization.

The atoms in most metals and alloys like to
sit on a regular lattice called a crystal. Atoms
which are aligned with the lattice exist in a min-
imum energy state. However in the real world,
a sample of metal will contain dislocations and
cracks and adjacent regions of differently ori-
ented atoms. These departures from a perfect
crystal are called defects. By heating up the sam-
ple, one can weaken the bonds between atoms
which enables them to randomly jump around a
bit until they find a lower energy state than they
had before. As the sample cools down, atoms

9

will tend to settle in these new states and the sam-
ple will end up with larger regions of pristinely
crystallized atoms and fewer defects.

The analogy with simulated annealing as a
problem solving approach is somewhat weak,
but the mathematics are very similar. A simu-
lated annealing solver takes the thermodynamic
equations that describe metallic annealing and
applies them to tensor movement. As a result the
algorithm is highly stochastic, fairly progressive,
somewhere in between exact and approximate
(depending on the complexity of L), and slowly
transitions from global to greedy during the pro-
gression of each search.

A basic simulated annealing solver is actually
remarkably easy to implement and could work as
follows:

1. Define a temperature K. At the start of the
search K should be high.

2. From the location of τi, randomly pick a
τi+1 somewhere within a maximum radius
d, where d is covariant with K. The higher
the temperature, the larger the distance.

3. Evaluate the fitness qi+1 at τi+1.

(a) If qi+1 > qi then move to τi+1.

(b) If qi+1 < qi, then maybe still move to
τi+1, depending on the difference in
fitness (∆q) between qi and qi+1 and
K. The higher the temperature and the
smaller the difference in fitness, the
more likely a move to a less fit tensor
will be accepted.

4. Redefine K as a percentage of its current
value, simulating a cooling environment.

5. Repeat (2) to (4) until:

(a) a solution with an acceptable (prede-
fined) fitness is found,

(b) or until K drops below a predefined
limit.

The surprising feature of simulated annealing
is of course that it will sometimes deliberately
move to a worse solution. The benefit of being
willing to make things worse is that it sometimes
allows one to break out of a local optimum and
find higher ground that is more than one move
away. Since K is reduced during every iteration
though, the algorithm becomes less and less will-
ing over time to accept a move to a lower quality
tensor. One can imagine simulated annealing as
two solvers wrapped into a single package. At
first the search includes all of P and the algo-
rithm is clearly global minded. It is during this
phase that high ground is sought. Then as K
gets lower and lower the algorithm instead starts
behaving like a greedy stochastic sampler, only
willing to climb the local peak.

There are very few drawbacks to simulated
annealing and the things that do plague it tend to
wreak havoc no matter what generic solver you
apply. In particular high peaks with small basins
of attraction as shown in figure 5 can easily be
missed by the random nature of the sampler. On
the other hand simulated annealing can deal very
well with discontinuous and fractal terrain.

The problem I would like to discuss in this
context is not associated with simulated anneal-
ing solvers but rather with poor implementations
of f (τ). It is entirely possible to write a fitness
function that yields identical fitness values for
adjacent tensors. This will result in flat areas or
plateaus in L as shown in figure 8.

1

2

L′

Figure 8: Geometry of under-constrainedness

10

Plateaus in fitness landscapes are a manifesta-
tion of under-constrained fitness functions. Let
us repurpose the painting-a-dot example dis-
cussed on page 3, but instead of the Mona Lisa,
this time the painting in question is Who’s Afraid
of Red, Yellow and Blue. In this new case, a lot
of red dots can clearly be painted which are all
equally fit in the sense that they do not change the
appearance of the painting in any way. In other
words, the ‘peak’ in the fitness landscape defined
by this P and this f (τ) is more like a mesa than
a summit.

Plateaus in the low or medium ground of a
fitness landscape may well retard the progress
of many solvers as it becomes very difficult to
decide in which direction it is smart to move.
But plateaus in the high ground of a landscape,
specifically if they are the highest features, may
result in different yet equally valid solutions. This
is rarely what people are after but luckily it is
often possible to add additional terms to f (τ)
which introduce a gradient to L so that perfectly
horizontal plateaus become ever so slightly tilted
or curved.

Note that a plateau is defined as two or more
adjacent tensors with identical fitness. This
means that the dimensionality of plateaus can
be any number up to and including the dimen-
sionality of P as shown in figure 9.

D1
D2

D3

D4

P4

Figure 9: Plateaus of different dimensionality in
a 4-dimensional phase space.

3.4 Simulated Evolution
Evolutionary solvers and genetic algorithms have
long been popular amongst the computationally
minded and there are many different ways to
implement them. The ideas behind such algo-
rithms are derived from biological evolution and
its two main components of mutation and selec-
tion. Evolution is nature’s answer to systematic
problem solving, but apart from being very suc-
cessful, it is also rather slow. In nature that tends
not to matter too much because of the availability
of massive parallel processing (every atom simu-
lates itself in real-time), but when simulating the
process digitally, the performance can become
prohibitively slow.

The core idea of both biological and simulated
evolution is the heritability of traits. Biologi-
cally, traits are phenotypic expressions of allele-
complexes and the fitness of a specific complex is
measured by its frequency in the gene-pool over
time. Things are much simpler in a simulated
evolution environment as the fitness is not an
intrinsic property that is manifested statistically
over several generations, but rather it is defined
directly by f (τ). The analogy between the bio-
logical terms and mathematical symbols can be
summarised as follows:

• Population −−−−→ X̂
• Generation −−−−→ Xi

• Genome −−−−−−→ τ (tensor)

• Gene −−−−−−−−→ τi (tensor element)

• Allele −−−−−−−−→ |τi| (element value)

A typical evolutionary solver is an iterative
algorithm which maintains a population X̂ of
individuals and selectively culls and recombines
them to form successive generations Xi, Xi+1,
Xi+2, etc. The point is to only use the fittest indi-
viduals to form the next generation in order to
select from and expand upon the best genes from
a randomly generated gene-pool. The founder
generation X1 can either be distributed randomly
across all of P , or it could be limited to a smaller

11

patch in order to explore local optima. Not all
generations need have the same number of indi-
viduals. Especially X1 may benefit from being
much larger than subsequent generations, as a
dense sampling of L will reduce the chances that
solutions with small basins of attraction will go
unnoticed. The entire process can be described
as:

1. Populate P with a founder generation X1 of
randomly picked genomes.

2. Evaluate each genome in Xi using f (τ) and
create a hierarchyHi based on their fitness
distribution.

3. Combine genomes from Xi based onHi to
create offspring genomes for Xi+1.

4. Repeat (2) and (3) until:

(a) a genome with an acceptable (prede-
fined) fitness is found,

(b) or Xi fails to significantly improve
upon Xi−1, Xi−2, ...

But succinct as the basic approach may be,
there are a lot of details left unsaid and a lot of
decisions left unmade. Item (3) especially hides
a lot of complexity. The purpose of iteration in
this algorithm is to evolve a population of tensors
that occupy high peaks in L. For this to work, the
fittest tensors in generation Xi have to combine
to produce even fitter tensors in generation Xi+1,
but a lot can go wrong in this process.

Offspring from nearly coincident parents will
not contribute significantly to the representation
of L that the algorithm builds over time, since
that particular region has already been sampled.
Measuring the fitness of highly related tensors
very quickly suffers from diminishing returns.
On the other hand, parents which are too far
apart may well belong to different sub-species,
each in the process of climbing a different peak.
Since offspring will most likely fall somewhere
in between the parents in P , they are likely to end

up in a valley, as valleys tend to separate peaks
in a landscape. These two mating extremes are
called incestuous and zoophilic respectively and
they are as detrimental in nature as they are in
simulations.

Ideally one would select parents that are posi-
tioned on opposite sides of the same peak. But
even in the ideal case there are still more deci-
sions to be made regarding the combination
of two parent genomes to produce offspring.
This process is called coalescence and several
approaches exist.

Coalescence where some elements are copied
intact from τ1 and others from τ2 most resem-
bles the biological process of fertilization where
gametes combine to form a new genome. This
kind of merging only works well when τ contains
many elements:

τ1{ 3,8,1,17 }
τ2{ 5,2,9,25 }

↓
τ3{ 3,8,9,25 }

Coalescence where alleles are interpolated
between τ1 and τ2 treats the genes as smoothly
varying properties. In this sense the tensor ele-
ments do not so much resemble different alle-
les as entire allele-complexes. The interpolation
need not always be halfway, parental genomes
can be weighted either randomly, or based on ∆q:

τ1{ 3,8,1,17 }
τ2{ 5,2,9,25 }

↓
τ3{ 4,5,5,21 }

Finally, there’s no reason why (in a simulation)
offspring requires two parents. One could instead
take all τs in Xi into consideration during coales-
cence, or perhaps simulate asexual reproduction.

In addition to breeding selection, partner selec-
tion and coalescence algorithms, an evolution-
ary solver should also provide ways for introduc-
ing mutations into a genome. Again, there are
many ways to approach this problem, whether

12

one wants to treat genes as independent or covari-
ant, whether mutations are associated with gene
blending due to coalescence, whether mutations
are dependent on the uniformity of all tensors in
the (sub)species, whether mutations are in some
way related toHi or even the recent history ofH
over several generations, and so on and so forth.

Like all peak finding algorithms, evolution-
ary solvers perform better on certain landscape
geometries. As with all solvers, peaks with small
basins of attraction are easily missed and plateaus
are crossed slowly. Unlike many other algo-
rithms however, evolutionary solvers are capable
of exploring multiple peaks simultaneously by
populating each peak with its own sub-species.
As a result evolutionary solvers are decidedly
non-greedy, reasonably adaptive (especially if L
changes slowly over time), particularly open, and
very stochastic.

Unlike hill climbers and simulated annealing,
evolutionary solvers don’t really ‘walk’ across
the landscape in search of peaks. Instead they
act more like expanding and thinning clouds of
tensor particles. The velocity of the cloud front
is typically quite low and it is easily deflected by
obstructions such as plateaus.

While plateaus, narrow peaks and frac-
tal terrain are all geometric properties, over-
constrainedness causes topological defects in fit-
ness landscapes. When a fitness function is over-
constrained, it becomes impossible to evaluate
certain states of τ , and as a result L will contain
gaps. Depending on the size and connectivity of
these gaps, and depending on the solver in ques-
tion, this may or may not be a problem. Even
solvers that seem to move across L in a continu-
ous fashion do not actually travel from τi to τi+1
in a smooth fashion, they jump instantaneously
from one to the other. If a piece of L is missing
in between τi and τi+1 nobody will be the wiser.
But as gaps grow bigger, so do the chances of
stepping in one.

1

1

2

L′

Figure 10: Geometry of over-constrainedness

There are two important gap metrics in deal-
ing with over-constrained landscapes: area and
circumference. Gaps covering large portions of
L will delay or even halt a solver as it is unable
to cross over to the other side. Small gaps on
the other hand may go completely unnoticed
as the solver never attempts to sample an over-
constrained tensor. The lower limit for the cir-
cumference of a gap is at least equal to the cir-
cumference of a circle of equal area14, but there is
no upper limit. The boundary of a gap can exhibit
fractal properties which can trap algorithms such
as hill climbers and evolutionary solvers into ever
narrowing tendrils of L, see 1 in figure 10. This
sort of topology acts as an over-abundance of
local optima. However if the area is small —even
in the case of fractal boundaries— then the gap
can go unnoticed as it will tend to fall between
successive samplings of L, see 2 in figure 10.
Simulated annealing in particular is adept at deal-
ing with over-constrained problems, as it often
traverses large distances and can thus easily span
gaps that cover significant percentages of L.

14Technically the minimal circumference (as measured
in P , not L) is equal to the area of a hyper-sphere with the
same volume and dimensionality as the gap.

13

4. CONCLUSIONS
This paper discussed the fundamentals of generic
solvers. Although a detailed understanding of
such algorithms is not a prerequisite for their
application, potential users should at least famil-
iarise themselves with the notions of phase-
spaces, fitness functions and fitness landscapes,
as defining these aspects is the responsibility of
the user. It is important to realise that generic
solvers are stochastic rather than analytic pro-
cesses, and that they may take a prohibitively
long time to run, depending on the specifics of
the problem at hand.

ACKNOWLEDGEMENTS
This paper was written in LATEX 2ε , proofread by
K, and funded by Robert McNeel & Associates.
Thanks to all.

ABOUT THE AUTHOR
David Rutten is a graduate of the faculty of Archi-
tecture and Urbanism at TUDelft. Since 2006 he
has been employed by the Andrew leBihan part-
nership in Turku, Finland, and, more recently,
by Robert McNeel & Associates in Seattle, WA
where his main task is the continued development
of and support for the Grasshopperr plug-in for
Rhinoceros 3Dr. Grasshopper is a visual pro-
gramming environment aimed at those who wish
to partake in computational design.

14

	Problem solving
	Problem categories
	Solver categories

	Problem analysis
	N12 dimensional landscapes

	The famous four
	Divide and conquer
	Hill climbing
	Simulated Annealing
	Simulated Evolution

	Conclusions

